Finite-difference methods for boundary value problems at high Grashof number

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Difference Methods and Deferred Corrections for Ordinary Boundary Value Problems*

Compact as possible difference schemes for systems of nth order equations are developed. Generalizations of the Mehrstellenverfahren and simple theoretically sound implementations of deferred corrections are given. It is shown that higher order systems are more efficiently solved as given rather than as reduced to larger lower order systems. Tables of coefficients to implement these methods are...

متن کامل

Chebyshev finite difference method for a two−point boundary value problems with applications to chemical reactor theory

In this paper, a Chebyshev finite difference method has been proposed in order to solve nonlinear two-point boundary value problems for second order nonlinear differential equations. A problem arising from chemical reactor theory is then considered. The approach consists of reducing the problem to a set of algebraic equations. This method can be regarded as a non-uniform finite difference schem...

متن کامل

On the convergence of finite difference methods for weakly regular singular boundary value problems

The second order finite difference methods M1 based on a non-uniform mesh and M2 based on an uniform mesh developed by Chawla andKatti [Finite differencemethods and their convergence for a class of singular two point boundary value problems, Numer. Math. 39 (1982) 341–350] for weakly regular singular boundary value problems (p(x)y′)′ = f (x, y), 0<x 1, with p(x)= xb0 , 0 b0< 1, and boundary con...

متن کامل

The Convergence of Spectral and Finite Difference Methods for Initial-Boundary Value Problems

The general theory of compatibility conditions for the differentiability of solutions to initial-boundary value problems is well known. This paper introduces the application of that theory to numerical solutions of partial differential equations and its ramifications on the performance of high-order methods. Explicit application of boundary conditions (BCs) that are independent of the initial c...

متن کامل

Using finite difference method for solving linear two-point fuzzy boundary value problems based on extension principle

In this paper an efficient Algorithm based on Zadeh's extension principle has been investigated to approximate fuzzy solution of two-point fuzzy boundary value problems, with fuzzy boundary values. We use finite difference method in term of the upper bound and lower bound of $r$- level of fuzzy boundary values. The proposed approach gives a linear system with crisp tridiagonal coefficients matr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1987

ISSN: 0898-1221

DOI: 10.1016/0898-1221(87)90046-0